Part Number Hot Search : 
34410A NTROLBR C1006 SSM2318 DZ2J220 815DE ISL59830 GD4027B
Product Description
Full Text Search
 

To Download HMC557ALC4TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  gaas, mmic fundamental mixer, 2.5 ghz to 7.0 ghz data sheet hmc557a rev. c document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 ?2015C2016 analog devices, inc. all rights reserved. technical support www.analog.com features conversion loss: 8 db lo to rf isolation: 50 db lo to if isolation: 35 db input third-order intercept (ip3): 18 dbm input second-order intercept (ip2): 55 dbm lo port return loss: 8 dbm rf port return loss: 10 dbm passive double balanced topology wide if bandwidth: dc to 3 ghz 24-terminal ceramic leadless chip carrier package applications wimax and fixed wireless point to point radios point to multipoint radios test equipment and sensors military end use functional block diagram nic nic gnd lo gnd nic 1 2 3 4 5 6 18 17 16 15 14 13 nic 19 20 21 22 23 24 package base gnd gnd rf gnd nic nic nic nic gnd if gnd nic nic nic nic nic nic nic 7 8 9 10 11 12 13161-101 nic = no intern a l connection. figure 1. general description the hmc557a is a general-purpose, double balanced mixer in a 24-terminal, ceramic leadless chip carrier, rohs-compliant package. the device can be used as an upconverter or down- converter from 2.5 ghz to 7.0 ghz. this mixer is fabricated in a gallium arsenide (gaas) metal semiconductor field effect transistor (mesfet) process and requires no external components or matching circuitry. the hmc557a provides excellent local oscillator (lo) to radio frequency (rf) and lo to intermediate frequency (if) isolation due to optimized balun structures. the rohs-compliant hmc557a eliminates the need for wire bonding and is compatible with high volume surface-mount manufacturing techniques.
hmc557a data sheet rev. c | page 2 of 23 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 functional block diagram .............................................................. 1 general description ......................................................................... 1 revision history ............................................................................... 2 electrical specifications ................................................................... 3 2.5 ghz to 5.0 ghz frequency range ....................................... 3 5.0 ghz to 7.0 ghz frequency range ....................................... 3 absolute maximum ratings ............................................................ 4 esd caution .................................................................................. 4 pin configuration and function descriptions ............................. 5 interface schematics ..................................................................... 6 typical performance characteristics ............................................. 7 downconverter performance with upper sideband selected, if = 100 mhz ................................................................................ 7 downconverter performance with upper sideband selected, if = 1000 mhz .............................................................................. 9 downconverter performance with upper sideband selected, if = 2000 mhz ............................................................................ 10 downconverter performance with lower sideband selected, if = 100 mhz .............................................................................. 11 downconverter performance with lower sideband selected, if = 1000 mhz ............................................................................ 12 downconverter performance with lower sideband selected, if = 2000 mhz ............................................................................ 13 p1db performance with downconverter mode selected at lo drive = 15 dbm .......................................................................... 14 upconverter performance with upper sideband selected, if = 100 mhz ................................................................................... 15 upconverter performance with upper sideband selected, if = 1000 mhz ................................................................................ 16 upconverter performance with upper sideband selected, if = 2000 mhz ................................................................................ 17 upconverter performance with lower sideband selected, if = 100 mhz ................................................................................... 18 upconverter performance with lower sideband selected, if = 1000 mhz ................................................................................ 19 upconverter performance with lower sideband selected, if = 2000 mhz ................................................................................ 20 spurious performan ce with upper sideband selected, if = 100 mhz ...................................................................................... 21 applications information .............................................................. 22 outline dimensions ....................................................................... 23 ordering guide .......................................................................... 23 revision history 8 /2016 rev. b to rev. c change s to ordering guide .......................................................... 23 1/ 2016 rev. a to rev. b change to lo to rf isolation parameter, table 2 ........................ 3 9/ 2015 rev. 0 to rev. a changes to features section ............................................................ 1 added maximum peak reflow temperature parameter, table 3 ................................................................................................ 4 updated outline dimensions ....................................................... 23 changes to ordering guide .......................................................... 23 7/ 2015 revision 0 : initial version
data sheet hmc557a rev. c | page 3 of 23 electrical specifications 2.5 gh z to 5.0 gh z frequency range t a = 25c, if = 100 mhz, lo drive = 15 dbm. all measurements performed as a downco nverter with the upper sideband selected, unless otherwise noted. table 1. parameter min typ max unit operating conditions rf frequency range 2.5 5.0 ghz lo frequency range 2.5 5.0 ghz if frequency range dc 3 ghz performance conversion loss 8 10.5 db noise figure, single sideband (ssb) 8 db lo to rf isolation 40 50 db lo to if isolation 26 35 db rf to if isolation 20 db input third - order intercept (ip3) 14 18 dbm input second - order intercept (ip2) 55 dbm input power for 1 db compression (p1db) 10 dbm rf port return loss 10 db lo port return loss 8 db 5.0 gh z to 7.0 gh z frequency range t a = 25c, if = 100 mhz, lo drive = 15 dbm. all measurements performed as a downconverter with the upper sideband selected, unle ss otherwise noted. table 2. parameter min typ max unit operating conditions rf frequency range 5.0 7 .0 ghz lo frequency range 5.0 7.0 ghz if frequency range dc 3 ghz performance conversion loss 8.5 10.5 db noise figure, single sideband (ssb) 8.5 db lo to rf isolation 37 43 db lo to if isolation 25 33 db rf to if isolation 25 db input third - order intercept (ip3) 14 18 dbm input second - order intercept (ip2) 55 dbm input power for 1 db compression (p1db) 10 dbm rf port return loss 12 db lo port return loss 12 db
hmc557a data sheet rev. c | page 4 of 23 absolute maximum rat ings table 3. parameter rating rf input power 25 dbm lo input power 27 dbm channel temperature 175c continuous p diss (t = 85c), derate 10.81 mw/c above 85c) 972 mw thermal resistance (channel to ground pad) 92.5c/w maximum peak reflow temperature 260c storage temperature range ?65 c to +150 c operating temperature range ?40 c to +85 c esd sensitivity, human body model (hbm) 1000 v (class 1c) stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum operatin g conditions for extended periods may affect product reliability. esd caution
data sheet hmc557a rev. c | page 5 of 23 pin configuration an d function descripti ons nic nic gnd lo gnd nic 1 2 3 4 5 6 18 17 16 15 14 13 nic hmc557a t o p view (not to scale) notes 1. nic = no internal connection. 2. connect the exposed pad to a low impedance thermal and electrical ground plane. 19 20 21 22 23 24 gnd rf gnd nic nic nic nic nic nic nic nic nic nic gnd if gnd nic 7 8 9 10 11 12 13161-102 figure 2 . pin configuration table 4 . pin function descriptions pin no. mnemonic description 1, 5 to 7, 11 to 14, 18 to 24 nic no internal connection. no connection is required on these pins. these pins are not internally connected. however, all data is measured with these pins connected to rf/dc ground externally. 2, 4, 8, 10, 15, 17 gnd ground connect. connect these pins and the package bottom to rf/dc ground. 3 lo local oscillator port. this pin is dc - coupled and matched to 50 ?. 9 if intermediate frequency port. this pin is dc - coupled. for applications not requiring operation to dc, block this pin externally using a series capacitor with a value chosen to pass the necessary if frequency range. for operation to dc, this pin must not source or sink more than 2 ma of current or device nonfuncti onality or device failure may result. 16 rf radio frequency port. this pin is dc - coupled and matched to 50 ?. epad exposed pad. connect the exposed pad to a low impedance thermal and electrical ground plane.
hmc557a data sheet rev. c | page 6 of 23 interface schematics gnd 13161-077 figure 3 . gnd interface schematic lo 13161-078 figure 4 . lo interface schematic if 13161-079 figure 5 . if interface schematic rf 13161-080 figure 6 . rf interface schematic
data sheet hmc557a rev. c | page 7 of 23 typical performance characteristics downconverter perfor mance with upper sid eband selected, if = 100 mh z 0 ?4 ?8 ?12 ?16 ?20 2 3 4 5 6 7 8 9 conversion gain (db) rf frequency (ghz) 13161-001 t a = +85c t a = +25c t a = ?40c figure 7 . conversion gain vs. rf frequency at various temp eratures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2 3 4 5 6 7 8 9 conversion gain (db) rf frequency (ghz) 13161-002 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 8 . conversion gain vs. rf frequency at various lo drives 0 ?5 ?10 ?15 ?20 ?25 ?30 ?35 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 response (db) if frequency (ghz) 13161-003 conversion gain if return loss figure 9 . conversion gain and if return loss response vs. if frequency, lo frequency = 4.5 ghz 0 ?10 ?20 ?30 ?40 ?50 ?60 2 3 4 5 6 7 8 9 isolation (db) rf/lo frequency (ghz) rf to if lo to rf lo to if 13161-004 figure 10 . isolation vs. rf/lo frequency 0 ?5 ?10 ?15 ?20 ?25 ?30 ?35 2 3 4 5 6 7 8 9 lo return loss (db) lo frequency (ghz) 13161-005 t a = +85c t a = +25c t a = ?40c figure 11 . lo port return loss vs. lo frequency, lo drive = 15 dbm 0 ?5 ?10 ?15 ?20 ?25 ?30 ?35 2 3 4 5 6 7 8 9 rf return loss (db) rf frequency (ghz) 13161-006 t a = +85c t a = +25c t a = ?40c figure 12 . rf port return loss vs. rf frequency, lo frequency = 4.6 ghz, lo drive = 15 dbm
hmc557a data sheet rev. c | page 8 of 23 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 ip3 (dbm) rf frequency (ghz) 13161-007 t a = +85c t a = +25c t a = ?40c figure 13 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 70 60 50 40 30 20 10 2 3 4 5 6 7 8 9 ip2 (dbm) rf frequency (ghz) 13161-009 t a = +85c t a = +25c t a = ?40c figure 14 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 ip3 (dbm) rf frequency (ghz) lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm 13161-008 figure 15 . input ip3 vs. rf frequency at various lo drives 80 70 60 50 40 30 20 10 2 3 4 5 6 7 8 9 ip2 (dbm) rf frequency (ghz) 13161-010 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 16 . input ip2 vs. rf frequency at various lo drives
data sheet hmc557a rev. c | page 9 of 23 downconverter perfor mance with upper sid eband selected, if = 1000 mh z 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-0 1 1 t a = +85c t a = +25c t a = ?40c figure 17 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-013 t a = +85c t a = +25c t a = ?40c figure 18 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-015 t a = +85c t a = +25c t a = ?40c figure 19 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-012 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 20 . conversion gain vs. rf frequency at various lo drives 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-014 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 21 . input ip3 vs. rf frequency at various lo drives 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-016 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 22 . input ip2 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 10 of 23 downconverter perfor mance with upper sid eband selected, if = 2000 mh z 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-017 t a = +85c t a = +25c t a = ?40c figure 23 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-019 t a = +85c t a = +25c t a = ?40c figure 24 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-021 t a = +85c t a = +25c t a = ?40c figure 25 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-018 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 26 . conversion gain vs. rf frequency at various lo drives 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-020 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 27 . input ip3 vs. rf frequency at various lo drives 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-022 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 28 . input ip2 vs. rf frequency at various lo drives
data sheet hmc557a rev. c | page 11 of 23 downconverter perfor mance with lower sid eband selected, if = 100 mh z 0 ?4 ?8 ?12 ?16 ?20 2 3 4 5 6 7 8 9 conversion gain (db) rf frequency (ghz) 13161-023 t a = +85c t a = +25c t a = ?40c figure 29 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 ip3 (dbm) rf frequency (ghz) 13161-025 t a = +85c t a = +25c t a = ?40c figure 30 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 70 60 50 40 30 20 10 2 3 4 5 6 7 8 9 ip2 (db) rf frequency (ghz) 13161-027 t a = +85c t a = +25c t a = ?40c figure 31 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2 3 4 5 6 7 8 9 conversion gain (db) rf frequency (ghz) 13161-024 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 32 . conversion gain vs. rf frequency at various lo drives 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 ip3 (dbm) rf frequency (ghz) 13161-026 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 33 . input ip3 vs. rf frequency at various lo drives 80 70 60 50 40 30 20 10 2 3 4 5 6 7 8 9 ip2 (dbm) rf frequency (ghz) 13161-028 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 34 . input ip2 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 12 of 23 downconverter perfor mance wit h lower sideband sel ected, if = 1000 mh z 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-029 t a = +85c t a = +25c t a = ?40c figure 35 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-031 t a = +85c t a = +25c t a = ?40c figure 36 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-033 t a = +85c t a = +25c t a = ?40c figure 37 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-030 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 38 . conversion gain vs. rf frequency at various lo drives 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-032 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 39 . input ip3 vs. rf frequency at various lo drives 8 0 1 0 7 0 4 0 6 0 3 0 2 0 5 0 2 . 5 6 . 5 4 . 5 7 . 5 5 . 5 3 . 5 i p 2 ( d b m ) r f f r e q u e nc y ( g h z) 13161 - 03 4 l o = 9 d b m l o = 11 d b m l o = 13 d b m l o = 15 d b m l o = 17 d b m figure 40 . input ip2 vs. rf frequency at various lo drives
data sheet hmc557a rev. c | page 13 of 23 downconverter perfor mance with lower sideband selected, if = 2000 mh z 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-035 t a = +85c t a = +25c t a = ?40c figure 41 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 25 20 15 10 5 0 ip3 (dbm) 2.5 3.5 4.5 5.5 6.5 7.5 rf frequency (ghz) 13161-037 t a = +85c t a = +25c t a = ?40c figure 42 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 80 10 70 40 60 30 20 50 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-039 t a = +85c t a = +25c t a = ?40c figure 43 . input ip2 vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?4 ?8 ?12 ?16 ?20 2.5 3.5 4.5 5.5 6.5 7.5 conversion gain (db) rf frequency (ghz) 13161-036 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 44 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 20 5 15 2.5 6.5 4.5 7.5 5.5 3.5 ip3 (dbm) rf frequency (ghz) 13161-038 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 45 . input ip3 vs. rf frequency at various lo drives 80 10 70 60 30 50 20 40 2.5 6.5 4.5 7.5 5.5 3.5 ip2 (dbm) rf frequency (ghz) 13161-040 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 46 . input ip2 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 14 of 23 p1 d b performance w ith downconverter mode s elected at lo drive = 15 db m 16 6 14 8 12 10 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-041 t a = +85c t a = +25c t a = ?40c figure 47 . input p1db vs. rf frequency at various temperatures, if = 100 mhz, usb 16 6 14 8 12 10 2.5 6.5 4.5 7.5 5.5 3.5 p1db (dbm) rf frequency (ghz) 13161-043 t a = +85c t a = +25c t a = ?40c figure 48 . input p1db vs. rf frequency at vario us temperatures, if = 2000 mhz, usb 16 6 14 8 12 10 2.5 6.5 4.5 7.5 5.5 3.5 p1db (dbm) rf frequency (ghz) 13161-045 t a = +85c t a = +25c t a = ?40c figure 49 . input p1db vs. rf frequency at various temperatures, if = 1000 mhz, lsb 16 6 14 8 12 10 2.5 6.5 4.5 7.5 5.5 3.5 p1db (dbm) rf frequency (ghz) 13161-042 t a = +85c t a = +25c t a = ?40c figure 50 . input p1db vs. rf frequency at various temperatures, if = 1000 mhz, usb 16 6 14 8 12 10 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-044 t a = +85c t a = +25c t a = ?40c figure 51 . input p1db vs. rf frequency at various temperatures, if = 100 mhz, lsb 16 6 14 8 12 10 2.5 6.5 4.5 7.5 5.5 3.5 p1db (dbm) rf frequency (ghz) 13161-046 t a = +85c t a = +25c t a = ?40c figure 52 . input p1db vs. rf frequency at various temperatures, if = 2000 mhz, lsb
data sheet hmc557a rev. c | page 15 of 23 upconverter performa nce with upper sideb and selected, if = 1 00 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-047 t a = +85c t a = +25c t a = ?40c figure 53 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-049 t a = +85c t a = +25c t a = ?40c figure 54 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-051 t a = +85c t a = +25c t a = ?40c figure 55 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-048 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 56 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-050 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 57 . input ip3 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 16 of 23 upconverter performa nce with upper sideb and selected, if = 1 000 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-052 t a = +85c t a = +25c t a = ?40c figure 58 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-054 t a = +85c t a = +25c t a = ?40c figure 59 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-056 t a = +85c t a = +25c t a = ?40c figure 60 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-053 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 61 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-055 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 62 . input ip3 vs. rf freque ncy at various lo drives
data sheet hmc557a rev. c | page 17 of 23 upconverter performance with upp er sideband selected, if = 2000 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-057 t a = +85c t a = +25c t a = ?40c figure 63 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-059 t a = +85c t a = +25c t a = ?40c figure 64 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-061 t a = +85c t a = +25c t a = ?40c figure 65 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-058 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 66 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-060 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 67 . input ip3 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 18 of 23 upconverter performa nce with lower sideb and selected, if = 100 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-062 t a = +85c t a = +25c t a = ?40c figure 68 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-064 t a = +85c t a = +25c t a = ?40c figure 69 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-066 t a = +85c t a = +25c t a = ?40c figure 70 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-063 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 71 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-065 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 72 . input ip3 vs. rf frequency at various lo drives
data sheet hmc557a rev. c | page 19 of 23 upconverter performa nce with lower sideb and selected, if = 1 000 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-067 t a = +85c t a = +25c t a = ?40c figure 73 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-069 t a = +85c t a = +25c t a = ?40c figure 74 . input ip3 vs. rf frequ ency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-071 t a = +85c t a = +25c t a = ?40c figure 75 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-068 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 76 . conversion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-070 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 77 . input ip3 vs. rf frequency at various lo drives
hmc557a data sheet rev. c | page 20 of 23 upconverter performa nce with lower sideb and selected, if = 2 000 mh z 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-072 t a = +85c t a = +25c t a = ?40c figure 78 . conversion gain vs. rf frequency at various temperatures, lo drive = 15 dbm 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-074 t a = +85c t a = +25c t a = ?40c figure 79 . input ip3 vs. rf frequency at various temperatures, lo drive = 15 dbm 12 0 10 4 2 8 6 2 8 5 9 7 3 6 4 p1db (dbm) rf frequency (ghz) 13161-076 t a = +85c t a = +25c t a = ?40c figure 80 . input p1db vs. rf frequency at various temperatures, lo drive = 15 dbm 0 ?20 ?4 ?16 ?8 ?12 2 8 5 9 7 3 6 4 conversion gain (db) rf frequency (ghz) 13161-073 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 81 . conver sion gain vs. rf frequency at various lo drives 30 0 25 10 5 20 15 2 8 5 9 7 3 6 4 ip3 (dbm) rf frequency (ghz) 13161-075 lo = 9dbm lo = 11dbm lo = 13dbm lo = 15dbm lo = 17dbm figure 82 . input ip3 vs. rf frequency at various lo drives
data sheet hmc557a rev. c | page 21 of 23 spurious performance w ith upper sideband s elected, if = 100 mh z mixer spurious products are measured in dbc from the if output power level. spur values are (m rf) ? (n lo). m n spurious outputs rf frequency = 5 ghz, rf input power = ?10 dbm, lo frequency = 4.9 ghz, lo drive = 15 dbm. n lo 0 1 2 3 4 5 m rf 0 n/a 1 +3.6 +33.3 +25.2 +43.3 +28.6 1 +15.9 +0.00 +31.7 +38.1 +60.8 +73.4 2 74.8 64.7 61.2 63.6 79.5 75.1 3 +74.2 +78.6 +80.8 +72 +78.5 +79.2 4 +73.2 +77.5 +75.3 +78 +90.7 +79.3 5 ?92.8 +72.7 +76.7 +77.6 +81.3 +88.9 1 n/a means not applicable.
hmc557a data sheet rev. c | page 22 of 23 applications informa tion 13161-082 figure 83 . evaluation printed circuit board (pcb) table 5 . list of materials for evaluation pcb ev1hmc557alc4 1 item description j1, j2, j3 johnson sma connector u1 hmc557a lc4 mixer pcb 2 118703 evaluation pcb 3 1 reference this number when ordering the complete evaluation pcb. 2 the circuit board material is rogers 4350. 3 this is the bare pcb of the evaluation pcb kit (see figure 83). it is recommended that the application circuit board use rf circuit design techniques. use signal lin es with a 50 ? impedance , and connect the package ground leads and exposed pad directly to the ground plane. use a sufficient number of via holes to connect t he top and b ottom ground planes. the evaluation circuit board shown in figure 83 is available from analog devices, inc. , upon request.
data sheet hmc557a rev. c | page 23 of 23 outline dimensions 12 0.50 bsc 2.50 ref bot t om view t op view side view sea ting plane 1.02 max 2.50 sq 1 24 7 13 18 19 6 for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. 04-03-2015- a 0.36 0.30 0.24 pin 1 (0.32 0.32) exposed pad pkg-000000 pin 1 indic a t or 4.13 4.00 sq 3.87 3.10 bsc figure 84 . 24 - terminal cerami c leadless chip carrier [lcc] ( e - 24- 1) dimensions shown in millimeters ordering guide model temperature range package body material lead finish msl rating 1 branding 2 package description package option hmc557alc4 ?40c to +85c alumina ceramic gold over nickel msl3 h557a xxxx 24- lead lcc e -24-1 HMC557ALC4TR ?40c to +85c alumina ceramic gold over nickel mls3 h557a xxxx 24- lead lcc e -24-1 HMC557ALC4TR -r5 ?40c to +85c alumina ceramic gold over nickel mls3 h557a xxxx 24- lead lcc e -24-1 ev1hmc557alc4 evaluation board 1 maximum peak reflow temperature of 260c. 2 four - digit lot number = xxxx. ? 2015 C 2016 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d13161 - 0 - 8 /16(c )


▲Up To Search▲   

 
Price & Availability of HMC557ALC4TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X